Esquimalt Municipal Hall, Public Safety Building and Fire hall Energy Retrofit Opportunity

Energy Evaluation for:

Esquimalt Municipal Hall, Public Safety Building and Fire Hall

Esquimalt, BC

Attention:

Marlene Lagoa
Sustainability Coordinator
Township of Esquimalt

Prepared by:

Jim Groenewoud P Eng. Coral Engineering Limited 778-829-9711

May 14, 2010

© 2010. All rights reserved This work may not be reproduced in whole or in part, by photocopy or other means, without permission of the author.

Township of Esquimalt

TABLE OF CONTENTS

1.	Executive Summary	2
1.1	Background of the Project	2
1.2	Précis of Project	
1.3	Summary Report Table	
1.4	Limited Liability	3
1.5	Allocation of Funds	
2.	Customer Information	4
3.	Administrative Issues	5
3.1	Sustainability	
3.2	Green House Gas Reductions	
3.3	Maintenance (Municipal Hall)	5
3.4		
3.5	Warranty (Municipal Hall)Project Benefits	6
4.	Background Description of Facility, Hardware and Systems	
4.1	Mechanical Systems	
4.2	Energy Analysis	7
5.	Energy Conservation Opportunities	
5.1	Mechanical Upgrades	10
6.	Energy Consulting and Project Management	11
7.	Appendix "A"	11

1. Executive Summary

1.1 Background of the Project

Coral Engineering Limited was asked to provide an Energy Opportunity report on the Esquimalt Municipal Hall, Public Safety Building and Fire Hall. This report is to provide a series of strategies and measures which when implemented will reduce each facility's energy consumption and green house gas emissions.

Municipal Hall

This 1,900 m² (20,463 ft²) predominantly three story building has most of its HVAC equipment on the roof. This facility is comprised of a library and municipal hall on the main floor, and offices on the second and third floor. The facility currently produces **6** Tonnes of annual CO₂ emissions based on the following energy consumption data.

Public Safety and Fire Hall

This 1,275 m² (13,732 ft²) two story building with a basement, has a combination of functions, acting as the fire hall and the police headquarters. This facility currently produces **7.4** Tonnes of CO₂ annually.

1.2 Précis of Project

We have identified a number of opportunities to cut the overall energy consumption for your two facilities. This accomplishment will require some modifications of scheduling of the heating and ventilation systems.

Municipal Hall

The predominant portion of this facility is heated, cooled and ventilated by six Lennox rooftop heat pump units. Each of these units has an economizer in order to monopolize on free cooling during periods of moderate climate.

The library is heated, cooled and ventilated by three Lennox split systems. These systems have backup electric heating.

The server room is cooled by a pair of Mitsubishi ductless split systems.

Public Safety Building and Fire Hall

Two rooftop heat pumps serve the top two floors of this facility. One serves the police station and the second conditions the fire hall. Both of these units have economizers to take advantage of free cooling. To augment the heat pump rooftop units there are a number of baseboard electric heaters throughout the facility.

The basement houses a pair of storage rooms, washrooms, a weight room, a meeting room and a utility room. This space is heated and ventilated by a 100% outdoor air make up air unit.

This unit brings in outdoor air that is then heated by a duct heater and distributed to the floor. An exhaust unit extracts all of this air and releases it to atmosphere.

1.3 Summary Report Table

The costs and benefits associated with this project are summarized below:

Project Summary						
	Capital	Savings	Electricity	Gas	Payback	GHG
	Cost \$	\$	(kWh)	(Gj)	years	(tonnes)
Municipal Hall	**\$ 13,700.00					
**eco-Energy possible solar contribution	(\$2,000.00)					
**Provincial possible solar contribution	(\$2,000.00)					
BC Hydro Incentive ***	??					
Municipal Hall Final	\$ 9,700.00	\$2,300.00	33,700	0	4.2	0.7
Public Safety and Fire Hall	\$45,800.00					
BC Hydro Incentive ***	??					
Public Safety and Fire Hall Final	\$45,800.00	\$ 8,700.00	137,400	716	5.2	3
Total	\$54,500.00	\$11,000.00	171,100	5,490	4.9	3.7
Projected Future Usage			728,060			9.7

Note:

- 1) The capital costs listed for this project include engineering, implementation and project management, but does not include for hazardous waste removal or seismic upgrades of equipment.
- 2) The capital costs further assume that all of the equipment such as valves and controls are fully operational.
- 3) Contact Key Account Manager for Possible BC Hydro Incentive. ***

1.4 Limited Liability

This Proposal is prepared by Coral Engineering Limited for the Township of Esquimalt and for grant applications.

This report was prepared by Coral Engineering Limited for the Township of Esquimalt. The material in it reflects our professional judgment in light of the information available to us at the time of preparation. The savings calculations are estimates of savings potential and are not guaranteed. The impact of building changes, building use changes, and staff control changes, new equipment additions, change in the operation procedures, additional computers and weather need to be considered when evaluating savings.

Without the express written permission, any use which a third party makes of this report, or any reliance on or decisions made based on it, are the responsibility of such third parties. Coral Engineering will accept no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

Please direct any questions to me directly at 778-829-9711. We await your further instructions on this matter and assure you of our co-operation at all times.

1.5 Allocation of Funds

The Municipal Hall

This project has the potential to reduce the energy footprint of the facility by 6%.

If all of these recommendations meet with your approval, then we recommend that \$13,700.00 be budgeted for the implementation of capital projects. The Township of Esquimalt may want to have a contingency fund for items and controls that are found to be defective during the energy retrofit.

We estimate that these projects will decrease the electrical load by 33,700 kWh or 121.6 GJe.

The net result of this is 121.6 GJ_e of annual energy savings. These energy saving strategies earn the Township of Esquimalt 0.7 Tonnes reduction in annual greenhouse gas (GHG) emissions. The project will earn the (12% GHG reduction) and will concurrently reduce the energy consumption by \$2,300 each year. Note that these savings are based on 2009 electrical energy costs.

The capital costs indicated in this report are firm for a period of two months after which time it may need to be adjusted based on the Labour and Metals index and the possible adjustment in the relationship of the Canadian dollar.

Public Safety and Fire Hall

This project has the potential to reduce the energy footprint of the facility by 41%.

If all of these recommendations meet with your approval, then we recommend that \$ 45,800.00 be budgeted for the implementation of capital projects. The Township of Esquimalt may want to have a contingency fund for items and controls that are found to be defective during the energy retrofit.

We estimate that these projects will decrease the electrical load by 137,400 kWh or 496 GJ_e. These energy saving strategies earn the Township of Esquimalt 3.0 Tonnes reduction in annual greenhouse gas (GHG) emissions. The project will earn the (41% GHG reduction) and will concurrently reduce the energy consumption by \$8,700 each year. Note that these savings are based on 2009 electrical energy costs.

2. Customer Information

Municipal Hal 1229 Esquimalt Road

Esquimalt, B.C.

V9A 3P1

Public Safety Building 500 Park Place

Esquimalt, B.C.

V9A 6Z9

Contact Information: Marlene Lagoa, Sustainability Coordinator

1229Esquimalt Road Phone: (250) 414 7114

Email: marlene.lagoa@esquimalt.ca

Municipal Hall

BC Hydro account (Hydro Address 1235) 9992 8218 051

BC Hydro rate 1200

Facility type Office Building Facility age Opened late 2004

Total floor area and number of floors 1,900 m² / predominantly three

storey building

The condition of the exterior of the building appears to be in good condition, and about 30% of the façade is double pain windows.

Public Safety and Fire Hall Building

BC Hydro account 9992 8217 251

BC Hydro rate 1200

Facility type Combination office and Fire Hall

Facility age Opened late 1975

Total floor area and number of floors 1,275 m² / predominantly a two storey building plus basement

The condition of the exterior of the building appears to be in good condition, and about 14% of the exterior façade is double pain windows. Most of the windows are not well shaded.

3. Administrative Issues

3.1 Sustainability

One of the key functions of this report is to provide measures that can be implemented with the re-use of as much of the existing equipment as possible. This will minimize the capital cost of the retrofit as well as make the facility more sustainable in its energy consumption both embodied as well as direct usage. As part of this process we have included the following features:

- We emphasise that solar heating is most feasible on a cost payback bases. Once the capital
 cost has been paid, the cost of operation of solar heating is minimal. On the Municipal Hall we
 recommend it not for its payback but for its environmental stewardship.
- On the fire hall we recommend converting the MUA to a heating ventilation unit in order to reduce energy consumption.

3.2 Green House Gas Reductions

The Esquimalt Municipal Hall, and the Public Safety Building, can reduce its impact on the environment and reduce greenhouse gas emissions by implementing measures outlined in this opportunity report. The implementation of the measures in this proposal will reduce the green house gas produced by your facility by the following:

Municipal Hall 0.7 Tonnes
Public Safety Building 3 Tonnes

This equals a total green house gas saving of 3.7 Tonnes of CO₂ emissions per year.

3.3 Maintenance (Municipal Hall)

The designs of the new systems are very simple and require minor control modifications.

 We recommend a drain-back DHW preheat system. This will eliminate the need for frequent propylene glycol testing.

3.4 Warranty (Municipal Hall)

The various pieces of equipment have different manufacturer's warranties.

- The Solar system panels come with a ten year warranty.
- The pump has a one year warranty.

3.5 Project Benefits

All three facilities can reduce its impact on the environment and reduce green house gas emissions by implementing the recommended measures in this proposal.

Some of the benefits of this implementation are listed below:

GHG reductions: Municipal Hall 0.7 Tonnes.
 Public Safety Building 3.0 Tonnes.

3.7 Tonnes

Provide a total energy savings of approximately:

Municipal Hall 121.6 Gje/year. Public Safety Building 496 Gje/year. **617.6 Gj/year**

Reduce the cost of the energy consumption of the facilities:

Municipal Hall by \$ 2,300/year (based on 2009 energy costs). Public Safety Building by \$ 8,700/year (based on 2008 energy costs). \$ 11,000/year

Implementing the measures suggested will show leadership and environmental stewardship which can be used to teach our younger generation the measures that can be taken towards carbon neutrality.

4. Background Description of Facility, Hardware and Systems

4.1 Mechanical Systems

Municipal Hall

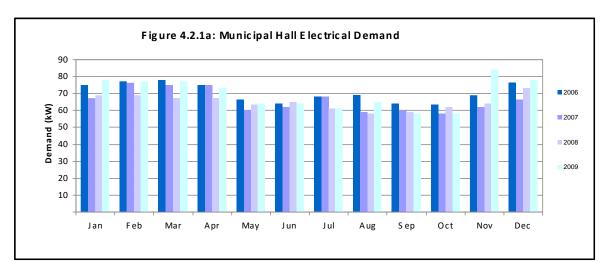
Heating and ventilation for the municipal hall is performed by some six Lennox rooftop heat pumps. These units are able to provide free cooling and backup electric heat. The Library is heated and cooled by three Lennox heat pump split systems with backup electric heat. The Server room is cooled year round by a pair of Mitsubishi ductless splits. All of this equipment is fairly new and in good shape.

Public Safety and Fire Hall

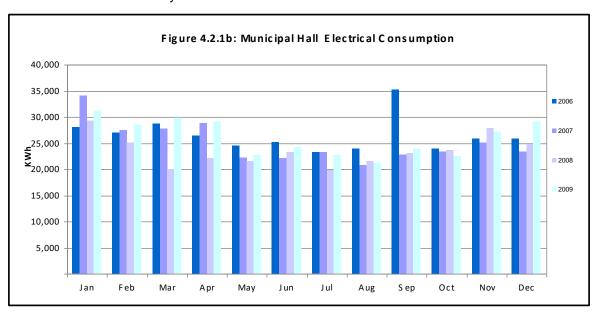
The heating and ventilation of the two storey building is provided by a pair of rooftop heat pumps. One of these two units is brand new. One of these units serves the Police station and the second the Fire hall. These units do have programmable thermostats but since the facility is occupied on a 24/7 bases it is hard to set back the space temperatures.

The basement is ventilated by a make up air unit and the air is heated by a large electric coil located in the basement. At the other end of the floor an exhaust air fan discharges all of this heated air to atmosphere.

The fire engine bay is heated by a pair of electric heaters which do not appear to be on most of the time.

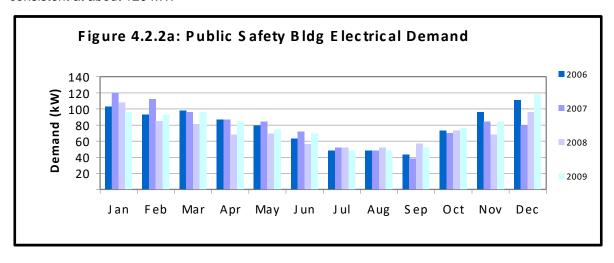

4.2 Energy Analysis

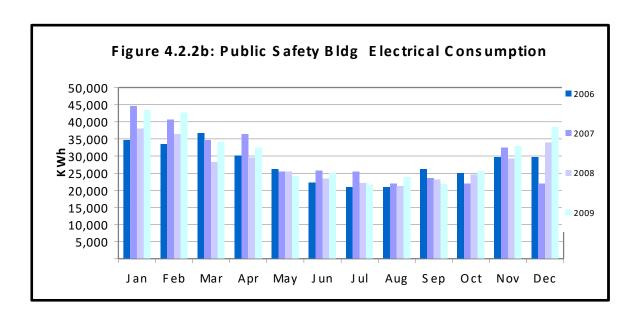
Municipal Hall


To understand the patterns of energy consumption, we have analyzed the natural gas and electrical consumption of the building.

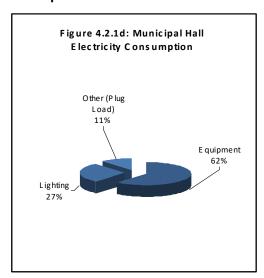
The following energy analysis for the facility is based on the BC Hydro utilities' records for this facility.

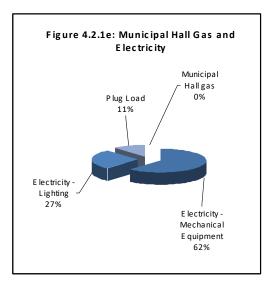
These graphs highlight trends in energy demand and consumption that help us identify areas for potential conservation.


In Figure 4.2.1 a, we notice the facility's demand has had a relatively consistent load profile for the last several years with a peak load of approximately 75 kW year round. This reflects the relatively constant use of the facility and it appears that there is a slightly lower load during the summer which possibly is relative to the reduction in use of the facility.


In Figure 4.2.1 b), we notice that the monthly electrical consumption is quite usual, with no large variations for a given month from year to year. When we look at the monthly consumption trend, it appears that the monthly consumption is peaked at around 35,000 kWh per month.

Public Safety Building


In Figure 4.2.2 a) below, we notice the facility's demand has a strong seasonality to the load. The winter peak is consistent at about 120 kW.


In Figure 4.2.2 b) below, we notice that the monthly electrical consumption is also seasonal. When we look at the monthly consumption trend, it appears that the monthly consumption is peaked at around 45,000 kWh per month.

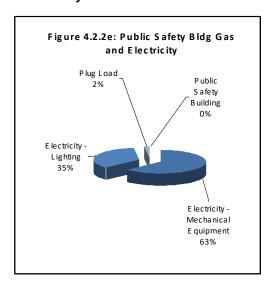
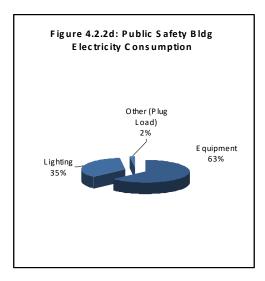

Municipal Hall

Figure 4.2.1d) and Figure 4.2.1e) for the Municipal Hall are the same because there is no gas use at this facility. All of the heating is performed by electrical resistant heaters.



Public Safety and Fire Hall

Figure 4.2.2e) and Figure 4.2.2d) are identical since there is not natural gas used by this facility.

The HVAC component is a large portion of the total electrical use of the facility because all the heating is performed by electric heat.

5. Energy Conservation Opportunities

The primary purpose of this study was to identify energy conservation opportunities at the two Township of Esquimalt facilities. We have identified and analyzed many potential opportunities to save energy and cost by modifying and upgrading mechanical systems at this facility. We will explain these ideas in detail in this section. For electricity, current BC Hydro electricity rates of \$8.92 / kW for demand and \$0.0437 / kWh for consumption have been used.

For greenhouse gas estimates, we have used emissions factors of 0.022 kg CO₂e / kWh of electricity in BC.

5.1 Mechanical Upgrades

The following measures describe a minor upgrade to the control system and the addition of some new technology.

Municipal Hall

5.1.1 Addition of a Demonstration Solar System.

Although the domestic hot water consumption at the municipal hall is small, we recommend the installation of a drain back glazed solar DHW system, for demonstration purposes and as a sign of environmental stewardship.

5.1	Mechanical Measure Summary				S	avings	
Item	Description	Cost	Payback	\$	GJ	kWh	GHG
						0	0.0
						0	0.0
5.1.1	Install Demonstration Solar Panel	\$ 8,000	184	\$ 43		1,050	0.0
						0	0.0
						0	0.0
5.1	Total Mechanical	\$ 8,000	184	\$ 43	-	1,050	

5.1.2 Demand Ventilation of Council Chamber HVAC

Should a group want to use the space, the motion detectors will enable the unit and the CO₂ detectors will allow the unit to control the CO₂ levels in the space.

5.1.3 Unoccupied Setback

The council chambers are often not used and yet is has a schedule similar to the rest of the municipal offices. When units are enabled, they have a minimum outdoor air damper position allowing in outdoor air when the space is un-occupied. This outdoor air usually needs to be heated or cooled. This is a waste of energy. We recommend that when the space is un-occupied as determined by motion detectors that the units go into a sleep mode and are disabled but kept fairly close to the daily set-point; maybe a couple of degrees warmer in the summer and a couple of degrees colder in the winter. The outdoor air damper remains closed, so that we are not adding an un-necessary load on the HVAC equipment.

5.1	DDC Measure Summary				S	avings	
Item	Description	Cost	Payback	\$	GJ	kWh	GHG
							0.0
5.1.2	Demand Controlled Ventilation			\$ 535		13,000	0.3
5.1.3	Unoccupied Setback	\$ 500	9.4	\$ 54		1,300	0.0
							0.0
							0.0
5.1	Total DDC	\$ 500	.8	\$ 589		14,300	.3

Public Safety and Fire Hall

5.1.4 Convert the MUA-1 into an Heating Ventilation unit.

Presently the 100% make up air unit, which serves the basement, runs long hours while there is very little use of the space. We recommend that the MUA be converted to an heating ventilation unit allowing return air to become the majority of the air that serves this area with its ventilation needs.

5.1	Mechanical Measure Summary				S	avings	
Item	Description	Cost	Payback	\$	GJ	kWh	GHG
						0	0.0
5.1.1	Convert MUA to Heat Vent Unit	\$ 8,000	2.9	\$ 2,800		64,400	1.4
						0	0.0
						0	0.0
						0	0.0
5.1	Total Mechanical	\$ 8,000	2.9	\$ 2,800	-	64,400	1.4

6. Energy Consulting and Project Management

We will further assist the Township of Esquimalt in obtaining grants for the solar component of the energy retrofit from eco-Energy and Solar BC.

It is important to note that the above estimated financial support needs to be applied for and we do not offer any guarantee that the city will qualify to receive this support from the Provincial and Federal agencies.

7. Lighting

Lighting portion of this report is done under separate cover.

8. Appendix "A"

Acknowledgements

I	Esquimalt Municipal Hall, Public Safety and Fire Hall Bldg.
r	Coral Engineering Limited would like to acknowledge the valuable assistance of the following personnel in providing the necessary information for this report. Thanks to Mike Reed for their assistance at the various job

Appendix "A-1" Mechanical Projects

Municipal Hall

Mechanical Equipment Measures

5.1.1 Install Demonstration Solar Panel

motan Demonstration Colar Fair									
	Gas (GJ)	Electricity	(kWh)	Cost		Savings		Comments
Description	Before	After	Before	After		GJ	kWh	\$	The solar panel will be installed as a water
Install Demonstration Solar Panel			2,633	1,580	\$ 8,000		1,053	\$ 43	loop drain back system, this not requiring Propylene glycol which will deteriorate with high heat. It is estimated that the sysystem will save approximatelt 25% of the DHW heating needed for this building.
Summary		Ref	Payback	GHG	Cost	GJ	kWh	\$	
Install Demonstration Solar Panel		5.1.1	184.3	0.02	\$ 8,000	-	1,053	\$ 43	

DDC Controls Measures

5.1.2 **Demand Controlled Ventilation**

	Gas ((GJ)	Electricity	/ (kWh)	Cost		Savings		Comments
Description	Before	After	Before	After		GJ	kWh	\$	Council Chambers are seldom occupied.
									Motion detection and CO2
Council Chamber Demand ventilat	tion		25,948	12,974			12,974	\$ 535	
Summary		Ref	Payback	GHG	Cost	GJ	kWh	\$	
Demand Controlled Ventilation		5.1.2	0.0	0.3		-	12,974	\$ 535	

5.1.3 Unoccupied Setback

	Gas	(GJ)	Electricity	y (kWh)	Cost		Savings		Comments
Description	Before	After	Before	After		GJ	kWh	\$	Council Chambers are not continually
Council Chamber Unoccupied setb	pack		25,948	24,651	\$ 500		1,297		occupied. Recommend the installation of motion detection equipment allowing the equipment to go into a sleep mode with the outdoor damper fully closed.
Summary		Ref	Payback	GHG	Cost	GJ	kWh	\$	
Unoccupied Setback		5.1.3	9.4	0.0	\$ 500	-	1,297	\$ 53	

Public Safety and Fire Hall

Mechanical Equipment Measures

5.1.1 Convert MUA to Heat Vent Unit

	Gas (GJ)	Electricity	(kWh)	Cost		Savings		Comments
Description	Before	After	Before	After		GJ	kWh	\$	Presently the basement air handler is a
									100% outdoor air make up air unit. There is
			2,178	1,949			229		very little occupancy in the basement and
Convert MUA to Heat Vent Unit			80,256	16,051	\$ 8,000		64,205	\$ 2,804	converting the MUA to a heating ventilation
									unit c/w CO2 sensor will save 80% of the
									electrical heating of this unit.
Summary		Ref	Payback	GHG	Cost	GJ	kWh	\$	
Convert MUA to Heat Vent Unit		5.1.1	2.9	1.4	\$ 8,000	-	64,434	\$ 2,804	

Appendix "A-2" Mechanical Inventories

Municipal Hall

			Municipal Hall				Inventory E	•																
System Name	Equipment Number	Location	Area Served	Mont Profil	hp	Load kW	Load Factor	Jan	Feb	IMar	Apr N		Month O Jun	p. Hours Jul		Sep	Oct	Nov	Dec	Annual Hrs	Annual kWh	% of Total	Schedule	hours /
																							1	
oftop Unit																								
nnox LGA088H	RTU-1	Roof	Building	A	2.0		100%					372			372			360			6,535		2 24/7	
nox LGA060H	RTU-2	Roof	Council Chamber	A	1.0	0.7	100%	372	336		360	372	360	372	372	360	372	360	372		3,267	1.€	6 24/7	
nox LGA048H	RTU-3	Roof	Council Chamber	A	0.8	0.6	100%	372	336	372	360	372	360	372	372	360	372	360	372	4,380	2,451	1.2	2 24/7	
nox LGA048H	RTU-4	Roof	Building	A	0.8	0.6	100%	372	336	372	360	372	360	372	372	360	372	360	372	4.380	2.614	1.3	3 24/7	
nox LGA072H	RTU-5	Roof	Building	A	1.5	1.1	100%	372	336	372	360	372	360	372	372	360	372	360	372	4,380	4,901		4 24/7	
inox LGA060H	RTU-6	Roof	Building	A	1.0	0.7	100%	372	336		360	372		372	372		372	360	372	4,380	3,267		6 24/7	
naust fan	EF-1	Roof	Outside washroom	Δ.		0.2	100%	372			360	372		372	372		372	360		4,380	745		4 24/7	_
haust fan	EF-2	Roof	Straff washroom			0.2	100%	372			360	372		372	372		372	360		4,380	745		4 24/7	_
haust fan	EF-3	Roof	Janitorroom	^		0.1	100%	372			360	372		372	372		372	360		4,380	307		1 24/7	+
haust fan	EF-5	Roof	Washrooms	^		0.1	100%	372			360	372		372	372		372	360			307		1 24/7	_
				A																				_
haust fan	EF-6	Roof	Outside meeting room rm213	. A		0.1	100%	372			360	372	360	372	372		372	360		4,380	600		3 24/7	
haust fan	EF-7	Roof	Outside meeting room rm221	Α.		0.3	100%	372			360	372	360	372	372	360		360		4,380	1,415		7 24/7	
haust fan	EF-8	Roof	Washroom 219	A		0.2	100%	372			360	372	360	372	372			360			745		4 24/7	
haust fan	EF-9	Roof	Washroom 104	A		0.3	100%	372			360	372		372	372		372	360			1,310		6 24/7	
haust fan	EF-10	Roof	Staff room 114	A		0.2	100%	372			360	372		372	372		372	360			745		4 24/7	
haust fan	EF-12	Roof	Elevator rm	A		0.2	100%	372	336	372	360	372	360	372	372	360	372	360	372	4,380	730	0.4	4 24/7	
haust fan	EF-13	Roof	Sprinkler	A		0.1	100%	372		372	360	372	360	372	372	360	372	360	372	4,380	569		3 24/7	
haust fan	EF-14	Roof	Book drop	A		0.1	100%	372			360	372			372		372	360	372		307		1 24/7	
st exhaust	EF-15	Roof	Meeting room	A		0.2	100%	372		372	360	372		372	372		372	360			832		4 24/7	
nnox GB3CM65	FC-1	Roof	Library	— I 🖺	0.8	0.6	80%	372			360	372		372	372		372	360		4,380	1.960		0 24/7	_
nox GB3CM65	FC-1	Roof	Library	^	0.8	0.6	80%	372			360	372		372	372		372	360			1,960		0 24/7	1-
nnox GB3CM95	FC-2	Roof	Library	^ ^	1.5	1.1	80%	372			360	372		372	372		372	360	372	4,380	3,921		9 24/7	-
tsubishi PK24FK	FC-4	server rm	Server room	A A	1.5	0.3	80%	496	448	496	480	496		496	496	480	496	480	496	5,840	1,402		7 24/7	-
				A																				_
subishi PK24FK	FC-5	server rm	Server room	А		0.3	80%	248	224	248	240	248	240	248	248	240	248	240	248	2,920	701	0.3	3 24/7	_
																						1 .		
ig Loads																								
mputers, elevator, printers and copier	rs, PL-1			A		10.0	100%	271.25	245	271.25	262.5	271.25	262.5	271.25	271.25	262.5	271.25	262.5	271.25	3,194	31,938	15.6	Demand	
oling and Heating																								
nox LGA088H	RTU-1	Roof	Building	A		6.7	80%	372			360	372	360	372	372		372	360			23,494		5 Demand	
nnox LGA060H	RTU-2	Roof	Council Chamber	A		4.5	80%	372	336		360	372		372	372		372	360		4,380	15,663		Demand	
nox LGA048H	RTU-3	Roof	Council Chamber	A	4.0	3.0	80%	372	336	372	360	372		372	372		372	360		4,380	10,442		1 Demand	
nox LGA048H	RTU-4	Roof	Building	A		3.0	80%	372	336	372	360	372	360	372	372	360	372	360	372	4,380	10,442		1 Demand	
nox LGA072H	RTU-5	Roof	Building	A	8.0	6.0	80%	372	336	372	360	372	360	372	372	360	372	360	372	4,380	20,884	10.2	2 Demand	
nox LGA060H	RTU-6	Roof	Building	A	6.0	4.5	80%	372	336	372	360	372	360	372	372	360	372	360	372	4,380	15,663	7.6	6 Demand	
26-060	HP-1	Roof	Library	E		5.0	80%	186	168	186	216	111.6	0	0	297.6	252	223.2	180	186	2,006	8,026	3.9	9 Demand	
26-060	HP-2	Roof	Library	E		5.0	80%	186	168	186	216	111.6	0	0	297.6	252	223.2	180	186	2.006	8.026		9 Demand	
26-090	HP-3	Roof	Library	Е		8.0	80%	186	168	186	216	111.6	0	0	297.6	252	223.2	180	186	2.006	12.841	6.2	3 Demand	_
mline Server cooling	C-1	Roof	Server room	Ē		1.0	80%	201.5	182		234	120.9	0	0	322.4	273	241.8	195		2,174	1,739		B Demand	
nline server cooling	C-2	Roof	Server room	Ē		1.0	20%	124			144	74.4	0	0	198.4		148.8	120		1.338	268		1 Demand	_
mine derver edening		11001	OCIVOI IOOM	Ē		1.0				12.0		7 -11	0	0	0		0.00			1,000	0		Demand	
				_		1.0	070	Ů	·	, i	Ü		-	·		_	Ů		Ů		Ü	0.0	Domana	
ating																								
ctric heat	EH-2	Duct	room 301	11		1.0	20%	31	28	31	36	18.6	^	^	49.6	42	37.2	30	31	334	67	^/	Demand	
	EH-2			Н Н		1.0	20%	31	28		36	18.6	0	0				30	31	334				1
ctric heat		Duct	room 204	H							36 36	18.6	0	0	49.6		37.2	30		334	67			-
ctric heat	EH-4	Duct	room 216	Н		1.5	20%	31		0.	00		0	0	49.6		37.2	- 0	01		100			4
ctric heat	EH-5	Duct	room 203	H		1.0	20%	31	28	31	36	18.6	0	0	49.6		37.2	30	31	334	67			4
W tank	WH-1	Facility	DHW tank	H		3.0	100%	46.5	42	46.5	54	27.9	0	0	74.4	63	55.8	45		502	1,505	0.7		4
W tank	WH-2	Facility	DHW tank	Н		2.3	100%	46.5	42	46.5	54	27.9	0	0	74.4	63	55.8	45	46.5	502	1,129	0.6	6 Demand	_
mps																								
ndensate pump		server rm	Server room	A			100%	744	672	744	720	744	720	744	744	720	744	720	744	8,760	88		24/7	J
			Totals			78.6														155,225	204,780			
																			Without	plugloads	172,843			
hting						29.4															77,242			
																				Total	282,022			
																				Actual	282,000			
tals by System Type					hp	kW														Hrs	kWh		1	
ntilation					10	10														105,120	42.334	21	1	
oling					37	48														35,810	127,486		d.	
					31	40														33,010	127,400	62	.1	
humidification						-														0.700	-	- 5		
mps						0														8,760	88	0	1	
ating						-																	1	
9					-	10														3,194	31,938	16		
ctric Heat					-	10														2,341	2,934	1	4	
out to 1 tout				Total	47	78														155,225	204,780	100		

Public Safety and Fire Hall

ENERGY INVENTORY FORM - Mech Systems

В	BUILDING NAME:			Public Safety Bldg					Inventory	Ву:		J Groenewo	ud													
te	System	Equipment	Location	Area Served	Quantity			Load	Load	$\overline{}$				Chec	k Month C	p. Hours	Apply					Annual	Annual	% of	Schedule	
е	Name	Number			_ `	Profil	hp	kW	Factor	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Hrs	kWh	Total		hours / da
H						+																				
R	Rooftop Unit																									
Υ	York XP090	HP-1	Roof	Firehall		Α	1.5	1.1		744	672											44 8,760			.6 24/7	
С	Carrier 50QJ006	HP-2	Roof	Police		Α	1.0	0.7	80%	744	672											44 8,760			.4 24/8	
	ngineered Air	MUA-1	Roof	Basement		Α	0.8	0.6	80%	744	672						744					44 8,760			.8 24/9	
	Exhaust fan	EF-1	Roof	Washroom	_	Α		0.2	80%	744	672											44 8,760			.5 24/7	
	Exhaust fan	EF-2	Roof	Basement	_	Α		0.2	80%	744	672					744	744					44 8,760			.5 24/7	
	Exhaust fan	EF-3	Roof	Fire hall smake exhaust	_	Α		0.1	80%	62	56		60				62					62 730			.0 24/7	
Ε	Exhaust fan	EF-5	Roof	Washrooms		Α		0.1	80%	744	672	744	720	744	720	744	744	4 720	744	72	20 7	44 8,760	49	0.	.2 24/7	
Р	Plug Loads																									
	Work shop tools, washer, drier, Fire door	'S				Α	2.0	1.5	20%	279	252	279	270	279	270	279	279	9 270	279	27	70 2	79 3,285	979	0.	.4 Demand	
	Computers, printers and copiers, etc.	PL-1				A	3.0	2.2	80%	279	252		270			279	279			27		79 3,285			.7 Demand	
	Cooling and Heating																									
	fork XP090	HP-1	Roof	Firehall		A4	9.5	7.1	100%	446.4	403.2	279	270	111.6	378	446.4	4464	4 270	334.8	48	36 5	58 8,447	59,786	27	.4 Demad	
	Carrier 50QJ006	HP-2	Roof	Police		A4		4.5	80%	297.6	268.8		180				2976			32		72 5,632			.2 Demad	t
	ngineered Air MUA	MUA-1	Roof	Basement		A2		0.4	80%	520.8	470.4		576				744			57						
	leating																									
	Force Flow	FF-1	wall	stairwell		G		5.0	50%	62	56	62	72	37.2	2 0	0	99.2	2 84	74.4	6	60	62 669	1.672	2 0.	.8 Demand	
=	Force Flow	FF-2	wall	stairwell		G		5.0	50%	62	56	62	72	37.2	0	0	99.2	2 84	74.4	- 6	60	62 669	1,672	0.	.8 Demand	1
3	Basement electric heat	EH-4	Duct	Basement		G		25.0	80%	372	336	372	432	223.2	0	0	595.2	2 504	446.4	36	30	72 4,013	80,256	36.	.8 Demand	1
3	Baseboards	BB-1to 15	wall	through out	15	5 G		0.5	40%	372	336	372	432	223.2	0	0	595.2	2 504	446.4	36	30 3	72 4,013	803	0.	.4 Demand	1
Ξ	Electric heat	HP-1	Rooftop Unit	rooftop unit		G		13.6	15%	372	336	372	432	223.2	0	0	595.2	2 504	446.4	36	30	72 4,013	8,186	3.	.8 Demand	1
Ξ	lectric heat	HP-2	Rooftop Unit	rooftop unit		G		10.0	15%	372	336	372	432	223.2	0	0	595.2	2 504	446.4	36	30	72 4,013	6,019	2.	.8 Demand	
	DHW tank	WH-1	Facility	DHW tank		G		30.0	22%	77.5	70	77.5	90	46.5	0	0	124	4 105	93	7	75 77	7.5 836	5,518	2.	.5 Demand	
)	DHW tank	WH-2	Facility	DHW tank		G		30.0	20%	77.5	70	77.5	90	46.5	0	0	124	4 105	93	7	75 77	7.5 836	5,016	2.	.3 Demand	
,	Pumps																									
	Condensate pump		server rm	Server room		Α			100%	744	672	744	720	744	720	744	74	4 720	744	72	20 7	44 8,760	88	0.	.0 24/7	
				Totals				137.7														109,06	B 218,089	9		
						_	_														Witho	ut Plugs	211,237			
j	_ighting							25.3															117,143			
																						Total	335,232			
																						Actual	335,160)		
	Totals by System Type						hp	kW														Hrs	kWh			
	/entilation						3	3														53,290		,	9	
	Cooling						16	12														14,079	79,925	37	7	
	Dehumidification						-	-																	-	
	Pumps						-	0														8,760	88		0	
	Heating						-	-														-	-		0	
	Plug						5	4														6,570			3	
	lectric Heat							119														19.061	109,141	5	0	

Appendix"A-3" Utility Information

Municipal Hall

	cipa	

Read Date	Days	Consumptio	Daily	Demand	Amount	Power	PF
		n				_	
		(kWh)	Average	(kW)	(\$)	Factor	Surcharge
		from meter read	(kWh/day)			(%)	(\$)
15-Dec-09	29	29160	1006	78	2166.99	99	0
17-Nov-09	32	27240	851	84	2013.38	99	0
16-Oct-09	30	22560	752	58	1705	98	0
16-Sep-09	33	23880	724	58	1760	98	0
14-Aug-09	31	21240	685	65	1681	97	0
16-Jul-09	31	22680	732	61	1723	98	0
15-Jun-09	32	24240	758	64	1802	98	0
14-May-09	27	22680	840	64	1735	98	0
16-Apr-09	32	29160	911	73	1968	99	0
16-Mar-09	31	29880	964	77	2002	99	0
13-Feb-09	29	28560	985	77	1949	99	0
15-Jan-09	30	31200	1040	78	2058	99	0
16-Dec-08	28	24720	883	73	1779	99	0
17-Nov-08	33	27840	844	64	1866	99	0
16-Oct-08	30	23640	788	62	1691	99	0
16-Sep-08	32	23040	720	59	1654	98	0
15-Aug-08	30	21480	716	58	1588	98	0
16-Jul-08	30	19920	664	61	1539	98	0
16-Jun-08	32	23280	728	65	1690	98	0
15-May-08	29	21600	745	63	1614	99	0
16-Apr-08	33	22080	669	67	1600	99	0
14-Mar-08	29	20040	691	67	1475	99	0
14-Feb-08	29	25080	865	69	1671	99	0
16-Jan-08	33	29280	887	69	1828	99	0
14-Dec-07	28	25080	896	66	1686	99	0
16-Nov-07	29	23160	799	62	1586	99	0
18-Oct-07	31	23400	755	58	1579	99	0
17-Sep-07	32	22800	713	60	1565	98	0
16-Aug-07	30	20880	696	59	1486	98	0
17-Jul-07	32	23280	728	68	1615	98	0
15-Jun-07	30	22080	736	62	1545	99	0
16-May-07	29	22200	766	60	1566	99	0
17-Apr-07	33	28920	876	75	1855	99	0
15-Mar-07	29	27720	956	75	1809	99	0
14-Feb-07	28	27480	981	76	1805	99	0
17-Jan-07	34	34080	1002	67	2203	99	0
14-Dec-06	28	27720	990	76	1863	99	0
16-Nov-06	30	25880	863	69	1733	99	0
18-Oct-06	30	23880	796	63	1662	99	0
18-Sep-06	45	35160	781	64	2458	98	0
3-Aug-06	30	24000	800	69	1692	98	0
5-Jul-06	30	23280	776	68	1598	98	0
5-Jun-06	32	25200	788	64	1655	99	0
4-May-06	30	24480	816	66	1636	99	0
5-Apr-06	29	26520	914	75	1747	99	0
6-Mar-06	31	28680	925	78	1840	99	0
5-Feb-06	29	27000	931	77	1773	99	0
3-Jan-06	30	27960	932	75	1801	99	0
J-Jan-00	30	21 900	<i>3</i> 3∠	13	1001	33	U

Public Safety and Fire Hall

Pub	lic	Sat	fetv	Bldg
		-		9

Public Safety	/ Bldg						
Read Date	Days	Consumptio n	Daily	Demand	Amount	Power	PF
		(kWh)	Average	(kW)	(\$)	Factor	Surcharge
		from meter read	(kWh/day)			(%)	(\$)
15-Dec-09	28	38520	1376	118	2631.8	99	0
17-Nov-09	32	32880	1028	84	2248.36	99	0
16-Oct-09	31	25680	828	76	1914.15	98	0
15-Sep-09	29	21840	753	52	1648.47	97	0
17-Aug-09	33	23880	724	48	1716.16	96	0
15-Jul-09	30	21720	724	48	1626	97	0
15-Jun-09	32	24960	780	69	1853.54	97	0
14-May-09	28	24120	861	74	1840.06	98	0
16-Apr-09	31	32400	1045	84	2140.85	99	0
16-Mar-09	28	34080	1217	96	2248.03	99	0
16-Feb-09	32	42720	1335	93	2578.79	99	0
15-Jan-09	30	43440	1448	96	2619.68	99	0
16-Dec-08	29	33960	1171	96	2243.44	99	0
17-Nov-08	32	29280	915	68	1940.01	99	0
16-Oct-08	30	24600	820	73	1775.14	98	0
16-Sep-08	32	23040	720	57	1646.01	97	0
15-Aug-08	29	21240	732	52	1552.97	97	0
17-Jul-08	31	22080	712	52	1586.64	97	0
16-Jun-08	32	23400	731	56	1656.07	97	0
15-May-08	29	25440	877	69	1791.4	98	0
16-Apr-08	33	29520	895	68	1889.74	99	0
14-Mar-08	29	28200	972	81	1834.69	99	0
14-Feb-08	29	36360	1254	85	2154.64	99	0
16-Jan-08	33	38040	1153	108	2309.29	99	0
14-Dec-07	28	32400	1157	79	2001.11	99	0
16-Nov-07	30	26160	872	84	1786.84	99	0
17-Oct-07	30	21960	732	70	1572.79	98	0
17-Sep-07	32	23520	735	38	1503.51	98	0
16-Aug-07	30	21960	732	48	1484.58	97	0
17-Jul-07	32	25440	795	52	1631.8	97	0
15-Jun-07	30	25800	860	72	1725.2	98	0
16-May-07	28	25440	909	84	1759.45	99	0
18-Apr-07	34	36480	1073	87	2283.08	99	0
15-Apr-07	29	34680	1196	96	2155.16	99	0
							-
14-Feb-07	29	40680	1403	112	2440.71	99	0
16-Jan-07	33	44640	1353	120	2699.15	99	0
14-Dec-06	28	37560	1341	111	2387.67	99	0
16-Nov-06	29	29640	1022	96	2020.07	99	0
18-Oct-06	32	25080	784	73	1749.75	97	0
16-Sep-06	43	26160	608	43	19939.57	97	0
4-Aug-06	30	20880	696	48	1484.27	97	0
5-Jul-06	30	20880	696	48	1328.93	98	0
5-Jun-06	32	22320	698	63	1543.92	99	0
4-May-06	30	26260	875	79	1750.22	99	0
4-Apr-06	29	30120	1039	87	1929.41	99	0
6-Mar-06	31	36720	1185	98	2219.41	99	0
3-Feb-06	29	33480	1154	93	2078.49	99	0
5-Jan-06	30	34680	1156	103	2163.05	99	0